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Turbulence Modeling of Free Shear Layers For High
Performance Aircraft

Douglas Sondak

In many flowfield computations, accuracy of the turbulence

model employed is frequently a limiting factor in the overall

accuracy of the computation. This is particularly true for complex
flowfields such as those around full aircraft configurations. Free

shear layers such as wakes, impinging jets, (in V/STOL

applications), and mixing layers over cavities are often part of these
flowfields.

Although flowfields have been computed for full aircraft, the

memory and CPU requirements for these computations are often

excessive. Additional computer power is required for multi-

disciplinary computations such as coupled fluid dynamics and

conduction heat transfer analysis. Massively parallel computers

show promise in alleviating this situation, and the purpose of this
effort was to adapt and optimize CFD codes to these new machines.

The objective of this research effort was to compute the

flowfield and heat transfer for a two-dimensional jet impinging
normally on a cool plate. The results of this research effort were

summarized in an AIAA Paper titled "Parallel Implementation of the
k-e Turbulence Model". Appendix A contains the full paper.
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Abstract

The k-e turbulence model has been added to a paral-

lel Navier-Stokes solver on an lntel iPSC/860 massively
parallel computer. Both a high-Reynolds-number model

with wall functions and the Chien low-Reynolds-number
model have been implemented. Two flowfields have been

computed: flow over a flat plate, and the flow and heat

transfer for a two-dimensional jet impinging normally on

a cool plate. Considerations specific to implementing
these models on parallel machines are discussed, and tim-

ings for the two models are presented.

Notation

Roman Symbols

C;, constant for k - e model (see Table 1
C I friction coefficient

C1 constant for k - c model (see Table 1)

C2 constant for k - e model (see Table I)
Cp specific heat at constant pressure

Ht source term vector for k - e equations
J Jacobian of coordinate transformation

k turbulent kinetic energy

L reference length
n normal distance from wall

P rate of production of turbulent kinetic energy
Pr Prandtl number

Q dependent variable vector

Re Reynolds number, Re = am L/u¢o

Ree Reynolds number based on freestream velocity
and momentum thickness

St Stanton number, St = q_,/pCpT,_U i
T temperature

T + temperature in wall coordinates,

T + = (T - T_) pCpu./q,_
u, v, w velocity components in Cartesian coordinate

directions

u + velocitynormalized by frictionvelocity

u. friction velocity

U, V, W contravariant velocity components

"Research Scientist, Member AIAA. Presently at United Tech-

nologies Research Center, East Hartford, CT. 06108
Copyright (_)1994 by the American Institute of Aeronautics and
Astronautics, Inc. All rights reserved.

• ",y, Z

y+

jet velocity
Cartesian coordinates

distance from wall in wall coordinates, y+ = u.n/v

Greek Symbols

3'

A

#t
/2

P

¢rc

O"k

7"

ratio of specific heats
Kronecker delta

dissipation rate of turbulent kinetic energy
yon Karman constant, 0.41

2v Ze7
molecular viscosity

turbulent viscosity

kinematic viscosity
transformed coordinates

density

constant for k- e model, 1.3

constant for k - e model, 1.0

shear stress; transformed time in eqn. (1)

Subscripts and Superscripts

i,j, k,l tensor indices
e turbulent

v viscous

w wall

z,y, z partial differentiation in Cartesian coordinate
directions

cc freestream condition

Other Symbols

(') vector in transformed coordinates

/_s microseconds

.Introduction

Although the performance ofsupercomputers has been

steadily improving, significant increases in computational
speed are required before the analysis of complex viscous

flows can be used as a routine design tool. An initia-

tive has been established, the High Performance Comput-

ing and Communications (HPCC) program, to accelerate



theseimprovements,primarilythroughthedevelopment
of hardwareandsoftwarefor massivelyparallelcomput-
ers.1

TheHPCCprogramis dividedinto twoareas,Com-

putational AeroSciences (CAS) and Earth and Space Sci-

ence (ESS). The CAS project contains four "grand chal-

lenge" problems, one of which is the High Performance

Aircraft (HPA). The HPA grand challenge includes com-

putations of the flowfield about a full aircraft undergoing
a maneuver and of a powered lift aircraft in transition

from hover to forward flight, t

An appropriate turbulence model must be selected for

these applications, taking into account issues of accuracy

and computational efficiency. Towards this end, the k-e
turbulence model has been added to an existing Navier-

Stokes solver 2 on an Intel iPSC/860. Both the Chien

low-Reynolds-number k-e model 3 and a high-Reynolds-
number k-e model 4 with wall functions s have been im-

plemented. Flow over a flat plate has been computed in
order to test the models and to get an initial set of CPU

times. To test the models on a more realistic geometry

which is applicable to the HPA grand challenge problem,
the flow and heat transfer for a 2D planar jet impinging

on a cool surface was then computed. Relative compu-

tational speeds of the two turbulence models differ from
those on serial computers, and the causes of the differ-

ences are examined and discussed.

Intel iPSC/860

All computations in the present study have been car-

ried out on the Intel iPSC/800 at NASA Ames Research

Center. The iPSC/860 contains 128 processing nodes in a

hypercube configuration. Each processing node consists
of a 40MHz Intel i860 processor and 8MB of memory.

Input/output is handled by 10 additional nodes (386-

based processors), each of which has 8MB of memory.
Ten 760MB disks are available for file storage. The front-

end machine is an Intel computer with an 80386 processor

and 8MB of memory.

On the iPSC/860, the memory for each processing node
is dedicated to that node, and messages must be passed

between nodes when data are to be shared. Message pass-

ing is costly in CPU time, and one of the primary pro-
gramming tasks is to minimize this cost through careful
choice of domain decomposition and the use of appropri-

ate solvers.

k-e Model

The nondimensional k-e transport equations in trans-

formed coordinates are given by

aQ, as, aA o6,
a--;-+ + + a-T

-R,- t,-5--+
where the dependent variable vector is

The flux vectors are

E' = d _ pe

Elu -" j-1

F_ = j-i

= k,

p,=j_i [ VPk ]vp_

&,=j_l [ WP_ ]Wp_

.% (_ o°< Oo, ^ Oo,k

[ ,ooo.. o ,_ooo.,]
=- p+

P

_,, = _ + _ +
9 9 '_

=c:+ +C_

,',,t= Grt= +'_v% +Gr/,

a5= GG + _yq,+ _,C,

a6 = r/,G + r/v(_+ _?,(,.

The source term vector is

Hi=J-! t

I 2u ( -C4n +

k,

where

= Re-: ,, + ";6qOz_) ]
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(9)

(lO)

(11)

(17)

(13)

(14)

(15)

(16)

(17)

2 k 0ue

(18)



Table 1: Constant.,

c', I c: l

Chien low-Re 3 1.35 I 1.8 ] Chigh-Re 4 1.44[ 1.92

C3

.0115

nodels :

C4 C_ I _ o',0.5 0.09 1.0 1.3

0.09 ] 1.0 1.3

n+ = Re_ t u.n (19)
Id

and

04 - (R, _--_.)' (20)f = 1 -T._e

k2( l ]). (21)_, = Re Cup 7 l-e-c,,, +

Here, n is the normal distance from the walL

The transport equations for the Chien low-Reynolds-

number model are the same as those for the high-
Reynolds-number model with the addition of terms to

account for the effects of solid walls. The low-Reynolds-

number terms are shown in boxes in the above equations.
The standard set of constants, shown in Table 1, is used
for all of the present computations.

Although the present application involves simple ge-
ometries, the parallel code was made as general as possi-

ble. A wail function formulation s which is applicable to
general geometries with wail heat transfer was therefore
employed.

Timing Considerations

In a previous study, 5 2D cases were computed on a
Cray Y-MP using the present turbulence models. In those

computations, a block Beam-Warming algorithm was uti-

lized, which differs from the present diagonalized algo-
rithm, but the relative timings for the turbulence models

are still valid. The resulting Y-MP timings were as fol-

lows: laminar, 35.7 ,us/pt./step; k-¢ with wall functions,
49.5/_s/pt./step; and Chien model, 50.9 m/pt./step. The

wall function and Chien cases required 38.7% and 42.6%

more time respectively compared to the laminar compu-
tations. The Chien model requires slightly more time
than wall functions (2.8%) due to additional terms in the

transport equations and the source term aacobians.

Some turbulence models require computation of nor-

mal distances to walls. This is true for the low-Reynolds-

number terms in equations (17) and (21). This is a disad-

vantage for MIMD implementations, since the locations
of the walls must be passed to other nodes. Distances to

walls are not required for the k-¢ model if wall functions

are employed. One of the purposes of the present study
is to quantify the effects of these differences on computa-
tional speed.
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Figure 1: Typical domain decomposition

Domain Decomposition

The computational grid is divided into subdomains,
and each subdomain is assigned to one node. At sub-

domain surfaces which are internal to the overall domain.

one plane of data adjacent to each internal surface is re-

quired for the computation of the right hand side of each

set of equations. These data may be obtained by passing
messages between subdomains, or alternatively, an addi-
tional, overlapping plane may be included at each internal

subdomain surface. The latter approach requires addi-

tional memory to store data for the overlapping planes,
but runs faster, since some message passing is avoidedl
This is the approach taken in the present code.

A typical domain decomposition, for a flat plate compu-

tation utilizing 16 nodes, is shown in Fig. 1. In this figure,
the s¢ direction is parallel to the plate and the r/direction
is normal to the plate. Subdomains are represented by

boxes, and the corresponding node number is shown in

each subdomain. The ranges of grid lines contained in

the nodes are shown on the left side and top of the fig-
ure. As an example of the grid overlap, data for _¢= 23

through ( = 47 are stored on node 5, even though the

solution domain for that node is ( = 24 through _ = 46.
Data for (= 46 through _ = 70 are stored on node 6, etc.

Additional details of the domain decomposition are given
by Ryan and Weeratunga. 2

The Navier-Stokes and k-¢ equations are solved loosely
coupled. A second-order, diagonalized, approximate-
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]
]
t
I



7

11
10

_I:.¢ _II Ill' I14I_Il7

S ' " "

,I

4

I

O

0 13me {mse¢) _,O

Figure 2: AIMS diagram for scalar tridiagonal solver

factorization scheme (ARC3D) s is employed for the

Navier-Stokes equations, and a first-order upwind scheme

with block tridiagonal solvers is used for the k-e equa-

tions. For the k-e equations, the source terms are lin-

earized, and the source term Jacobian is arbitrarily in-

cluded in a single factor. These equations are coupled
to one another solely through the source terms, so the

equations in the two factors which do not include the
source term Jacobians are uncoupled from one another.

For these factors, a scalar tridiagonaI solver is employed.

For the factor containing the source term Jacobian, a 2 x 2

block tridiagonal solver is employed.

Both equation sets are solved using Pipelined Gaussian

Elimination (POE), since this technique was found to be

a resonable compromise between CPU time and memory

requirements by Ryan and Weeratunga _"for the Navier-
Stokes solver. In PGE, a short message is passed across

the subdomain boundary for each grid point as soon as
the data are available.

A tool has been developed at NASA Ames, the Auto-
mated Instrumentation and Monitoring System (AIMS), 7

to help visualize the operation of parallel programs.
AIMS was utilized to verify the coding of the k-e solvers.

An example AIMS diagram for the scalar tridiagonal
solver for the domain decomposition of Fig. 1 is shown

in Fig. 2. Each horizontal bar represents a processor,
numbered on the left side of the figure, and the abcissa

represents time. Processors are in operation in times dur-

ing which the bars are solid, and are idle at other times,
typically waiting for messages to arrive. Lines connecting

processor bars represent messages being passed. The gray

bars represent computation time spent in the solver, and
the black bars represent computation time in other sub-

routines. For this configuration of processors, the forward

and backward sweeps are clearly shown (e.g., processors

0 -- 1 -- 2 -- 3 -- 2 -- I -- 0). The load imbalance (idle

time) which is inherent in PGE is shown by the extent of
the blank areas.

Wall Functions

For the present study, the wall function formulation of
Sondak and Pletcher s has been extended to include flows

with wall heat transfer. For each grid point adjacent to a

wall, it is determined whether the point lies in the viscous

sublayer or in the log region (neglecting the buffer region)
by computing the valueofy ÷. If the point is in the viscous

sublayer, the heat transfer rate is computed from

qi -- Pr cgzi'

assuming constant specific heats.

For points in the log region, the temperature log equa-

tion s is employed:

l y+T + = - In + A (23)

where A = 4.6 for the standard value Pr, = 0.9. The

wall heat transfer rate is then given by

(T - T_) pGu. (24)
q_ = T+

The direction of heat transfer is normal to the wall, and

the magnitude is equal to q_, so the heat transfer vec-
tor is completely specified. The heat transfer vector is

then transformed to the Cartesian coordinate system.

The Cartesian components are then substituted into the

right hand side of the energy equation. This method is

analogous to that used for shear stress by Sondak and
P[etcher. s

Results

A simple test case was desired which could be used to

verify that the parallel implementation of the turbulence
model was working correctly, and to obtain some prelim-

inary timings. Turbulent, subsonic flow over a fiat plate

was chosen for this purpose.
One of the eventual goals of the present work is to

compute the heat transfer and flowfield for the impinging

jets of a powered lift aircraft in hover for the HPA grand

challenge. Toward this end, the second test case is the
flow and heat transfer ['or a jet impinging normally on a

flat plate.

Flat Plat_

Flow over a semi-infinite flat plate was solved using a

91 × 91 grid. The grid is clustered at the plate surface and

4
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Figure 4: Flat plate friction coefficient

(b) Closeup of leading edge region

Figure 3: Flat plate grid

at the leading edge, as shown in Fig. 3. A grid spacing of
1 x 10 -5 (normalized by t,he plate length) at the wall was

chosen to yield y_+ m 3, keeping the grid point adjacent to
the wall in the viscous sublayer, as required by the Chien

model. There are 30 grid lines upstream of the leading
edge, and 61 on the plate.

A value of Moo = 0.2 was chosen to maintain a rea-

sonable convergence rate with essentiallyincompressible

flow.The Reynolds number based on freestreamvelocity
was approximately equal to 9 x i0s atthe outflowbound-

ary. A small value of freestream turbulent kineticen-

ergy was chosen (k/u_ = 0.00025) based on past experi-

ence,s and the freestreamdissipationratewas chosensuch

that/_too= I. At,the inflowboundary, density,momen-

tum components, k, and e were set to freestreamvalues,

and pressurewas extrapolated.At the outflowboundary,

pressure was fixedat the freestreamvalue,and density,

momentum components, and k and e were extrapolated.

On the stagnation streamline,density,streamwise mo-

mentum, pressure,k,and ¢ were extrapolatedand normal

momentum was set t.ozero (inviscidwall).On the plate,
densityand pressure were extrapolated,and momentum

components were set to zero (no-slip).For the Chien

model, k and e were set to zero at the plate. For wall

functions, k and _ at the plate are part of the formula-

tion. At the outer edge, all quantities were extrapolated.

Table 2: Fiat plate timings

cpu time (#s/pt./step) 1
no. nodes laminar wall fcn'. Chien

98.9 161.4 178.7

16

32

64

56.5 89.7

33'.5 52.4

I 22.3 33.9]5.] 21.9

100.2.

59.0

I 37.1
I 26.2

A semiempirical equation for friction coefficient as

a function of momentum-thickness Reynolds number is
given by s

/_0=( 3'75 24-_78) e°4(A-s) (25)

where A = _. The computed friction coefficient

distributions are compared with this equation in Fig. 4.
Table 2 shows CPU times for both turbulence models as

well as laminar flow. The Chien model requires 10-20%

more CPU time than the high-Reynolds-number model

with wall functions. In the serial code discussed above,
the the Chien model only required 2.8% more time. This

difference is attributable to the additional message pass-
ing required by the Chien model for computation of the
damping functions.

Impinging Jet

The second test case was a slot jet impinging on a cool

constant-temperature surface, as studied experimentally
by Schauer and Eustis. 9 The configuration chosen for the

present computation had a height-to-jet-width ratio of 40,
a jet Reynolds number of 4.08 x 104 , and a jet-to-wall-
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Figure 5: Impinging jet grid

temperature ratio of 1.105. The ambient temperature was

equal to the jet temperature.

Parts of the 121 x 121 grid is shown in Fig. 5. The

grid spacing at the wall was set to 2 x 10 -4 for a value of

y+ _ 1. A grid with a wall spacing of 1 x 10 -3 (y+ _ 5)

was tried initially, but it did not have sufficient resolu-
tion for the thermal boundary layer. The domain is 60

slot widths wide and 60 slot widths high. The bound-

ary conditions are as follows: Symmetry is imposed on

all quantities at the jet ¢enterline. On the surface of the
channel from which the jet discharges, density and pres-

sure are extrapolated, and momentum components are set

to zero (no-slip). For the Chien model, the damping func-

tions are not applied at this surface in order to minimize

message-passing. On the plate, momentum components

are set to zero (no-slip), the temperature is fixed, and

pressure is extrapolated. For the Chien model, k and
are set to zero at the plate. For wall functions, k and e

at the plate are part of the wall function formulation. At

, Schauer & Eustis experiment

0,002

0,001"

O.O0_

-- C_'lJen

.... Wall functions

o 2o ,0
x]d

Figure 6: Impinging jet heat transfer

6O

Table

no. nodes

16

32

64

3: Impinging jet timings
cpu time (#s/pt./step)

laminar wall fcn. Chien

525 86.7 95.2

33.0 52.3 58.6
18.8" 29.8 32.9

11.8 ... 18.6 I 22.6

the outflow boundary, pressure is fixed to the freestream

value, and density, momentum components, k, and e are

extrapolated. At the outer edge, all quantities are ex-

trapolated.

The computed flowfield was unsteady, with vortices

rolling up at the edge of the jet and traversing the do-
main. The period of the unsteadiness was determined by

monitoring the temperature of the flow at a grid point

adjacent to the plate in the wall jet, and the resulting
Strouhal number was equal to 0.29. The heat transfer

rates were determined by averaging the values over every

time step in one period (about 700 steps). The resulting

Stanton number distributions are compared with the ex-

perimental data in Fig. 6. It should be noted that the grid

was fine enough that the inner layer of the two-layer wall
function formulation was called into play at all points.

The temperature log equation could not be tested for the

present configuration due to the thermal boundary layer
resolution issue mentioned above.

A table of timings for the impinging jet case is shown

in Table 3. The trends are the same as those for the flat

plate case, as is to be expected. No timings are shown for
4 nodes because there was not sufficient memory available

for the 121 x 121 grid.

Summary and Conclusions

The k - e turbulence model has been added to a paral-

lel Navier-Stokes solver on an Intel iPSC/860. Two test



caseshavebeencomputed:flowoveranadiabaticflat
plate,andan impingingjet flowwithwallheattransfer.
Twowalltreatmentswereusedfor thek - e model, wall

functions, and the Chien low-Reynolds-number model.

The Chien model incurred an average CPU penalty of

13% compared to the wail function computations (on the

same grids). Approximately 10% is attributable to mes-

sage passing required in the calculation of damping func-
tions. The remaining 3% was also seen in a serial im-

plementation, and is therefore not a function of message

passing.

Some low-Reynolds-number models, such as that of

Jones and Launder, 10 do not utilize damping functions.

These models therefore will have an advantage in terms

of CPU time for parallel applications.

The impinging jet Stanton number distribution looks
somewhat better for wall functions than for the Chien

model, but it should not be concluded that wall functions

will generally yield better results for this type of flowfield.

Applications which exercise the temperature log equation

part of the wall function formulation must be computed
before any conclusions can be reached.

After additional validation, the next step will be to cou-

ple the present code with a thermal conduction solver 11 to

study coupled thermal conduction/convection problems.
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